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The influence of controlled vibrations on the granular rheology is investigated in a specifically designed
experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion
equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic
shape �the“granular droplet”� and a spreading dynamics are predicted that both agree quantitatively with the
experimental results. The theoretical analysis is used to extract effective friction coefficients between the base
and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of
dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely,
shear thinning is observed at high agitation.
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I. INTRODUCTION

Granular matter is a model material presenting the phe-
nomenology of a wide class of complex fluids with a yield
stress governing the transition between solidlike and liquid-
like behaviors. In this respect, the most important challenge
is to establish microscopically founded constitutive relations
describing the different phases as well as the features of the
phase transition itself. In the last decade, various important
propositions were made to draw analogies with glassy states
of matter or out of equilibrium thermodynamics �1,2� and
phase transitions �3,4�, but a full understanding still remains
an open question. An important reason has been the failure of
classical rheometers, which do not lead to homogeneous
flows �5�. For dense granular flows, the situation has pro-
gressed by the introduction of new geometries �Ref. �6�, and
references therein� such as the inclined plane configuration,
in which the stress tensor is controlled. Now, it is known that
sufficiently far from the jamming transition, the dense granu-
lar flow rheology is local in first approximation: it is gov-
erned by an effective friction coefficient increasing with the
shear rate properly rescaled by the local confining pressure.
The kinetic theory, valid in the gaseous regime, fails to de-
scribe this situation characterized by the existence of long
term contacts and force networks. In particular, binary colli-
sions lead to a decrease of friction �7� with the shear rate
instead of the observed increase. The most important open
issue concerns the jamming or unjamming transition and the
lack of identification of parameters controlling this hysteretic
transition �4�. It has recently been suggested that the dynam-
ics in the metastable region could be dominated by elemen-
tary rearrangements, interacting nonlocally �8� by fluctua-
tions or by the coupling with the modes of vibration �9�
�from internal or external origin�.

Here we have designed a specific experiment to measure
the influence of controlled vibrations on the granular rheol-
ogy. We hereafter study the unjamming induced by horizon-
tal shaking due to the transfer of energy by friction. Note that

all previous experiments have been performed in confined
geometries. The majority of them have used vertical vibra-
tion to agitate granular matter but relatively few have used
horizontal shear �10–13�; see also Ref. �14� for review. We
focus on two different questions. How does a granular film
spread under the action of horizontal vibrations? How can
the rheology be deduced from the spreading dynamics?

II. SETUP

The experimental apparatus is a horizontally shaken tray
�Fig. 1�a�� whose motion is a sinusoid of amplitude a and
angular frequency �=2�f . Driving frequencies f is between
15 and 30 Hz and the maximum amplitude is 1mm. The
substrate is a sand-cast aluminum plate with roughness of
about 10 �m. The tray is stabilized by four ball-bearing
rings gliding on two rails. The tray is leveled horizontally
within 1 /100°. A charge couple device �CCD� video camera
moves along with the tray and images the surface of the
deposit. From the deviation of a laser sheet shined at a small
angle �6°, we extract by correlation the droplet profile
h�x , t� with a subpixellar resolution ��h�50 �m�. Two
granular materials are used: glass beads of diameter d
=300±50 �m, whose static and dynamical friction coeffi-
cients are, respectively, �s=0.47 and �d=0.43 and faceted
Fontainebleau sand �d=300±60 �m, �s=0.66, and �d
=0.60�. The following protocol is used to prepare a layer
with reproducible initial conditions: an initial mass of sand is
poured in a rectangular bottomless confining box fixed to the
substrate. The box inner base defines the initial width Lx
=40 mm in the vibration direction x and Ly =150 mm in the
lateral dimension. To level off the deposit, the granular ma-
terial is shaken vigorously for 1 min at 40 Hz. After removal
of the confining box, an initial rooflike shape sand layer is
obtained �Fig. 1�b�, top�. To keep a lateral confinement of the
deposit, two small guiding sidewalls are fixed on the tray.

III. AN INERTIAL TRIBOMETER

When the vibration is switched on, the granular layer
loses its stability, gets a smooth shape, and spreads horizon-
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tally along the x direction �Fig. 1�b��. From direct visualiza-
tion of the layer motion �Fig. 1�c��, it can be observed that
within an oscillation period, all the surface grains bear al-
most the same relative phase with respect to the plate. This
suggests a close analogy with the motion of a solid slider. If
a constant Coulomb static friction �s is assumed, the onset of
relative motion between the substrate and the solid would
correspond to a rescaled acceleration �=a�2 /g equal to �s.
Actually, the situation turns out to be more complex. We
leave a systematic study of the motion onset to a future re-
port and we focus here on the high � regime, starting from
large deposit heights. Under these conditions, the film is set
into motion and eventually leaves the limits of the tray be-
fore stoppage.

Let us consider the dynamics of a vertical slice of the
granular droplet of width dx, of length Ly, and of height
h�x , t� �Fig. 1�c��. Along the vertical direction, pressure P
balances gravity g and reads: P=�g�h−z�, where � is the
density of the material. Assuming normal stress isotropy, the
pressure gradient induces a driving force −Lydx�gh�xh on
the slice. The tray exerts on it a resistive force Lydx� �� is the
shear component of stress� that opposes, on the average, the
spreading motion. To assess the momentum transfer due to
the complex sliding dynamics between the droplet and the
base, we introduce a friction coefficient � relating � to P. It
is worth noting that � can depend on the basal pressure P, on
h, a, and �. The strong hypothesis is that it weakly depends
on the relative velocity between the grains and the tray. We
checked, for instance, that the introduction of a hysteresis
between static and dynamic regimes does not affect signifi-
cantly the results in the range of � investigated here.

Then, the problem is completely similar to that of a solid
block on an oscillating tray, submitted to a driving force F
and a normal force N=mg �Fig. 2�b��. The analogy is estab-
lished through the dimensionless parameter F /N=−�xh. Our
setup is in some sense the equivalent of the “inertial tribom-
eter” �15� designed in the context of solid on solid friction
studies. We make the equations of motion dimensionless us-
ing �−1 as a characteristic time and a as a characteristic
length. In the sliding regime, the equation governing the evo-
lution of the dimensionless velocity difference v between the
slider and the tray is

�v̇ = � sin t − �
v
�v�

+
F

N
. �1�

Blockage of motion occurs for v=0. From rest �in the mov-
ing reference frame�, motion starts when �sin t�=� /�. We
have obtained exact solutions of the problem at the linear
order in F /N. For the purpose of the present paper, we only
need the average sliding velocity v̄, which is written under
the form

v̄ =
	��/��

�

F

N
. �2�

Depending on the value of � /�, the block motion may un-
dergo two different dynamical regimes �Fig. 2�c��: a continu-
ously sliding at large acceleration, for which

	 =
�

2
�1 −

�2�2

4�2 , �3�

and stop or start motions at smaller acceleration, for which
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FIG. 1. �a� Sketch of the experimental setup. �b� Laser profile as
a function of time: the top one corresponds to the granular film prior
to shaking; the three below are subsequent deposit shapes after the
vibration onset. Due to the laser inclination, the height is magnified
by a factor �10. �c� Space-time diagram obtained with a fast video
camera. The black sinusoids on the right show the tray motion. The
trajectories on the left are directly that of surface grains. The white
trace at the center shows the spreading granular front.
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FIG. 2. �a� Forces acting on a vertical slice of the drop. �b�
Analogy with a solid slider on a vibrating tray. �c� Function 	�� /��
relating the sliding velocity to friction �Eqs. �3� and �4��. �d� Tra-
jectories of a solid slider with respect to an oscillating tray for
�=1 /2, �=2 /3, and for F /N=10−2 �solid line� and
F /N=2
10−2 �dotted line�. The thin lines show the analytical pre-
diction of the mean drift �Eq. �2��.
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	 =
��� − arcsin��/���2

2��
, �4�

where � is the root of the transcendental equation:
cos���� /�+�=��� /��2−1+arcsin�� /��. 	 is an increas-
ing function of � /� that reflects the fraction of time during
which the solid block slides �Fig. 2�d��. To conclude this
section, let us emphasize that the drag force varies linearly
with the drift velocity although no viscosity is involved. This
directly results from the interplay between inertia and solid
friction.

IV. SPREADING DYNAMICS

A small aspect ratio H /W droplet allows for a depth inte-
grated �Saint-Venant� description. Assuming no significant
variation of density �, the flux of grains across a vertical
section of the drop can be approximated by a�v̄h. Using Eq.
�2�, the mass conservation law yields a nonlinear diffusion
equation,

�th = �x�U�xh
2� with U =

a�	��/��
2�

. �5�

Note that the diffusion coefficient U is velocity independent.
Assuming that U does not depend on height h, Eq. �5� admits
an exact parabolic self-similar solution as follows:

h�x,t� =
3S

2W�t�	1 − 
 2x

W�t�
�2� , �6�

with a spreading dynamics that can be written as

W�t�3 = W�0�3 + 72SUt . �7�

It can be shown that sufficiently localized initial conditions
converge at long time toward the self-similar solution—just
like the convergence toward Gaussians in linear diffusion.
Experimentally, the profiles h�x , t� were fitted by a parabola,
allowing the determination of the width W�t� and the maxi-
mal height H�t� with a relative precision of 10−3. Figure 3
shows the profiles measured at different times, rescaled by W
and H. Remarkably, all experimental points collapse on the
predicted parabolic shape �Eq. �6��. Residuals of the differ-
ence between the fitted curve and the experimental data
shows a deviation to a parabola of less than 4% in the central
part and around 10% on the edges, for all data presented
here. Compaction is small as the cross section area varies by
less than 1% over time and is equal to S=2H�t�W�t� /3.

Several curves W�t�3–W�0�3 obtained for f =24 Hz are
displayed in Fig. 3�c�. They present a quasilinear time depen-
dence whose slope increases with the vibration amplitude a.
We have chosen here initial width values W�0� such as to
avoid the nonuniversal initial transient. Note that in our ex-
periment, because of the lateral boundaries, we have evi-
denced weak but systematic transverse curvatures—the cen-
tral part spreads faster. Strictly speaking, the spreading
dynamics is three-dimensional but may be approximated by
a two-dimensional description since the curvature effect is
weak. So, theoretical predictions of the shape �Eq. �6�� and

the spreading law �Eq. �7�� are both in excellent agreement
with experimental findings �Fig. 3�.

V. EFFECTIVE RHEOLOGY

Using Eqs. �5� and �7�, the slope of the relation between
W3 and time t can be written as

dW3

dt
=

18gS

�f

�

�
	��/�� . �8�

From this relation, we have extracted an effective friction
coefficient �eff from the local slope of W�t�3 over a moving
1 s time window, with a systematic error smaller than 0.02.
For large heights �say H /d�10 for sand and H /d�5 for
glass beads�, the variations over time of �eff are smaller than
0.05. Now, �eff varies from one experiment to the other by
�0.03 for glass beads and �0.1 for sand. Therefore, as ini-
tially desired, this spreading experiment allows one to per-
form explicit measurements of a granular rheology under
controlled vibration with 10% resolution.

Figure 4 shows the effective friction coefficient �eff as a
function of the rescaled vibration velocity I= a�

�gd
, which

nicely collapses our data. This parameter is somehow similar
to the inertial number I built in the context of sheared dense
granular flows �4,6�: it compares the shear velocity at the
scale of the grain �here a�� and the typical impact velocity.
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FIG. 3. Spreading dynamics for sand at f =24 Hz. �a� Rescaled
droplet shapes at different times t for a=0.39 mm. �b� Fit residuals.
�c� Droplet surface S as a function of time, computed by integration
�solid line� or approximated by 2H�t�W�t� /3 ���. �d� W�t�3–W�0�3

for various a.
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However, it is important to note that, here, this characteristic
velocity is �gd, which corresponds to a free fall from a
grain size, and not to �P /���gh. Our experimental
resolution—as well as the presence of a maximum in
�eff�I�—allows one to dismiss the later possibility.

Moreover, as a test of consistency, we checked in the
block model that if we assume a friction coefficient � de-
pending on the instantaneous sliding velocity v as �
=�eff�v /�gd�, where �eff is the experimental law �Fig. 4,
solid line�, we recover a nonmonotonic curve for the effec-
tive friction coefficient determined from the drift velocity
through the function 	 �Fig. 4, dashed line�. Of course, both
values do not need to correspond exactly since the passage
from local to global friction is a nontrivial issue but this
calculation shows that the existence of a maximum is indeed
a robust feature of the model.

In the whole range of parameters, the coefficient �eff re-
mains within 50% of the dynamical friction coefficient �d.
Furthermore, its value for sand is higher than that for glass
beads in the ratio of �d or �s. This makes us confident about
the interpretation of �eff as a real friction coefficient. For
both sand and glass beads, the resolution achieved with our
apparatus is sufficient to evidence a nonmonotonous varia-
tion of friction with agitation. At large I, a weakening regime
is evidenced that corresponds to a shear thinning behavior,
characteristic of the predictions of kinetic theory �7�. Con-
versely, at low I, we evidence a robust shear thickening rhe-
ology, which is reminiscent from the behavior of dense
granular flows �4,6�. In further studies, it will be crucial to
investigate the jamming transition in this “inertial tribom-
eter” in the regime of small � and/or small heights H /d.
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